Resumen
Technological advances have allowed the development and availability of specialized tools for the use of historical data. In many cases, these tools are used for decision-making in multidisciplinary institutions that require support for the development of their activities, particularly in the health sector. The purpose of this study is to use a machine learning algorithm to predict heart attacks using demographic and family health data. The methodology focused on the extraction of open data from the Demographic and Family Health Survey (ENDES) applied in 2021 in Peru, characterization and execution of machine learning techniques using Orange Data Mining software. In this first approach, the results show that the logistic regression model has an accuracy of 0.99% on the prediction of heart attacks under the use of ENDES Peru 2021 data. For future studies, it is suggested to incorporate unstructured data such as text documents, sensor data and images to strengthen the reliability of the model.
Título traducido de la contribución | Logistic regression: an example for infarct prediction |
---|---|
Idioma original | Español |
Título de la publicación alojada | Proceedings of the 21st LACCEI International Multi-Conference for Engineering, Education and Technology |
Subtítulo de la publicación alojada | Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development, LACCEI 2023 |
Editores | Maria M. Larrondo Petrie, Jose Texier, Rodolfo Andres Rivas Matta |
Editorial | Latin American and Caribbean Consortium of Engineering Institutions |
ISBN (versión digital) | 9786289520743 |
Estado | Publicada - 2023 |
Publicado de forma externa | Sí |
Evento | 21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023 - Buenos Aires, Argentina Duración: 19 jul. 2023 → 21 jul. 2023 |
Serie de la publicación
Nombre | Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
---|---|
Volumen | 2023-July |
ISSN (versión digital) | 2414-6390 |
Conferencia
Conferencia | 21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023 |
---|---|
País/Territorio | Argentina |
Ciudad | Buenos Aires |
Período | 19/07/23 → 21/07/23 |
Nota bibliográfica
Publisher Copyright:© 2023 Latin American and Caribbean Consortium of Engineering Institutions. All rights reserved.
Palabras clave
- ENDES
- Infarction
- logistic regression
- Machine learning