Regresión logística: un ejemplo para la predicción de infartos

Henry Silva-Marchan, Gerardo Ortiz-Castro, Oscar Jhan Marcos Peña-Cáceres, Manuel Alejandro More-More

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Technological advances have allowed the development and availability of specialized tools for the use of historical data. In many cases, these tools are used for decision-making in multidisciplinary institutions that require support for the development of their activities, particularly in the health sector. The purpose of this study is to use a machine learning algorithm to predict heart attacks using demographic and family health data. The methodology focused on the extraction of open data from the Demographic and Family Health Survey (ENDES) applied in 2021 in Peru, characterization and execution of machine learning techniques using Orange Data Mining software. In this first approach, the results show that the logistic regression model has an accuracy of 0.99% on the prediction of heart attacks under the use of ENDES Peru 2021 data. For future studies, it is suggested to incorporate unstructured data such as text documents, sensor data and images to strengthen the reliability of the model.

Título traducido de la contribuciónLogistic regression: an example for infarct prediction
Idioma originalEspañol
Título de la publicación alojadaProceedings of the 21st LACCEI International Multi-Conference for Engineering, Education and Technology
Subtítulo de la publicación alojadaLeadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development, LACCEI 2023
EditoresMaria M. Larrondo Petrie, Jose Texier, Rodolfo Andres Rivas Matta
EditorialLatin American and Caribbean Consortium of Engineering Institutions
ISBN (versión digital)9786289520743
EstadoPublicada - 2023
Publicado de forma externa
Evento21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023 - Buenos Aires, Argentina
Duración: 19 jul. 202321 jul. 2023

Serie de la publicación

NombreProceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
Volumen2023-July
ISSN (versión digital)2414-6390

Conferencia

Conferencia21st LACCEI International Multi-Conference for Engineering, Education and Technology, LACCEI 2023
País/TerritorioArgentina
CiudadBuenos Aires
Período19/07/2321/07/23

Nota bibliográfica

Publisher Copyright:
© 2023 Latin American and Caribbean Consortium of Engineering Institutions. All rights reserved.

Palabras clave

  • ENDES
  • Infarction
  • logistic regression
  • Machine learning

Huella

Profundice en los temas de investigación de 'Regresión logística: un ejemplo para la predicción de infartos'. En conjunto forman una huella única.

Citar esto