A Machine Learning Study About the Vulnerability Level of Poverty in Perú

Henry A. Silva Marchan, Oscar J.M. Peña Cáceres, Dania M. Ricalde Moran, Teresa Samaniego-Cobo, Charles M. Perez-Espinoza

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

In recent years, people have been requiring new livelihoods that allow them to have enough economical resources for the development of their daily activities, considering the problematic that COVID-19 has brought to their lives. The objective of this research was to analyze machine learning algorithms such as Decision Tree, Random Forest, Naive Bayes, Logistic Regression and Vector Support Machine, in order to identify the risk level to fall into poverty for a person in Perú, basing the analysis on the National Household Survey (NHS) that the National Institute of Statistics and Informatics (NISI) provided on 2020. The methodology was presented in four stages, organization and structuring of the database, analysis and identification of the variables, application of the learning algorithms and evaluation of the performance of the aforementioned algorithms. Python programming language and the STATA software allowed the exploration of 91,315 registers and 33 variables. Results showed that the Decision Tree algorithm has an accuracy of 98%, while other algorithms are below the indicated range, so dynamism is expected in the application of this algorithm for socioeconomic areas that can be materialized through a permanent evaluation and analysis platform that helps to focus strategies and proposals for the benefit of the population with economic limitations.

Idioma originalInglés
Título de la publicación alojadaTechnologies and Innovation - 8th International Conference, CITI 2022, Proceedings
EditoresRafael Valencia-García, Martha Bucaram-Leverone, Javier Del Cioppo-Morstadt, Néstor Vera-Lucio, Emma Jácome-Murillo
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas3-14
Número de páginas12
ISBN (versión impresa)9783031199608
DOI
EstadoPublicada - 2022
Evento8th International Conference on Technologies and Innovation, CITI 2022 - Guayaquil, Ecuador
Duración: 14 nov. 202217 nov. 2022

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1658 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia8th International Conference on Technologies and Innovation, CITI 2022
País/TerritorioEcuador
CiudadGuayaquil
Período14/11/2217/11/22

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'A Machine Learning Study About the Vulnerability Level of Poverty in Perú'. En conjunto forman una huella única.

Citar esto